Microelectronic Circuits Sedra Smith 6th Edition PDF Free

Are you an engineering student searching for the best book to study with? Have you been searching for where to get microelectronic circuits by sedra and smith 6th edition pdf? Would you like to download sedra smith microelectronic circuits 6th edition pdf? Have you lost all hopes of finding where to get microelectronic circuits 6th edition pdf book? Relax you are not alone. Here on Knowdemia, we have made Microelectronic Circuits by Sedra and Smith 6th Edition available for fast free and easy accessibility.

Microelectronic Circuits by Sedra and Smith has served generations of electrical and computer engineering students as the best and most widely-used text for this required course. Respected equally as a textbook and reference, “Sedra/Smith” combines a thorough presentation of fundamentals with an introduction to present-day IC technology. It remains the best text for helping students progress from circuit analysis to circuit design, developing design skills and insights that are essential to successful practice in the field.

Table of Contents

About Microelectronic Circuits 6th Edition

Microelectronic Circuits, Sixth Edition, by Adel S. Sedra and Kenneth C. Smith

This market-leading textbook continues its standard of excellence and innovation built on the solid pedagogical foundation that instructors expect from Adel S. Sedra and Kenneth C. Smith. All material in the sixth edition of Microelectronic Circuits is thoroughly updated to reflect changes in technology–CMOS technology in particular. These technological changes have shaped the book’s organization and topical coverage, making it the most current resource available for teaching tomorrow’s engineers how to analyze and design electronic circuits.

Features:

* Streamlined organization. Short, modular chapters can be rearranged to suit any class organization. Topics that can be skipped on a first reading, while the student is grasping the basics, or that look ahead to advanced industrial applications, are clearly marked.

* Digital Integrated Circuits covered in a new, separate section, to make it easier to teach Computer Engineering students.

* Parallel Treatment of MOSFETs and BJTs. 90% of the market works with MOSFETs, so this vital topic is placed first in the textbook. The chapters on BJTs and MOSFETs are exactly parallel, so instructors can teach whichever one first that they prefer, and speed through the second topic by concentrating only on the differences between the two transistors.

* Frequency response in a separate chapter. Frequency response is now condensed into a single chapter, rather than being integrated within other topics.

Related eBook: Microelectronic Circuits 6th Edition Solutions Manual 

Table of contents

Copyright
Tables
Preface

part I. DEVICES AND BASIC CIRCUITSSignals and Amplifiers

Introduction
1.1. Signals
1.2. Frequency Spectrum of Signals
1.3. Analog and Digital Signals
1.4. Amplifiers
1.4.1. Signal Amplification
1.4.2. Amplifier Circuit Symbol
1.4.3. Voltage Gain
1.4.4. Power Gain and Current Gain
1.4.5. Expressing Gain in Decibels
1.4.6. Amplifier Power Supplies
1.4.7. Amplifier Saturation
1.4.8. Symbol Convention
1.5. Circuit Models for Amplifiers
1.5.1. Voltage Amplifiers
1.5.2. Cascaded Amplifiers
1.5.3. Other Amplifier Types
1.5.4. Relationships Between the Four Amplifier Models
1.5.5. Determining Ri and Ro
1.5.6. Unilateral Models
1.6. Frequency Response of Amplifiers
1.6.1. Measuring the Amplifier Frequency Response
1.6.2. Amplifier Bandwidth
1.6.3. Evaluating the Frequency Response of Amplifiers
1.6.4. Single-Time-Constant Networks
1.6.5. Classification of Amplifiers Based on Frequency Response
Summary
Problems

Operational Amplifiers
Introduction
2.1. The Ideal Op Amp
2.1.1. The Op-Amp Terminals
2.1.2. Function and Characteristics of the Ideal Op Amp
2.1.3. Differential and Common-Mode Signals
2.2. The Inverting Configuration
2.2.1. The Closed-Loop Gain
2.2.2. Effect of the Finite Open-Loop Gain
2.2.3. Input and Output Resistances
2.2.4. An Important Application: The Weighted Summer
2.3. The Noninverting Configuration
2.3.1. The Closed-Loop Gain
2.3.2. Effect of the Finite Open-Loop Gain
2.3.3. Input and Output Resistances
2.3.4. The Voltage Follower
2.4. Difference Amplifiers
2.4.1. A Single Op-Amp Difference Amplifier
2.4.2. A Superior Circuit: The Instrumentation Amplifier
2.5. Integrators and Differentiators
2.5.1. The Inverting Configuration with General Impedances
2.5.2. The Inverting Integrator
2.5.3. The Op-Amp Differentiator
2.6. DC Imperfections
2.6.1. Offset Voltage
2.6.2. Input Bias and Offset Currents
2.6.3. Effect of VOS and IOS on the Operation of the Inverting Integrator
2.7. Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance
2.7.1. Frequency Dependence of the Open-Loop Gain
2.7.2. Frequency Response of the Closed-Loop Amplifier
2.8. Large-Signal Operation of Op Amps
2.8.1. Output Voltage Saturation
2.8.2. Output Current Limits
2.8.3. Slew Rate
2.8.4. Full-Power Bandwidth
Summary
Problems

Semiconductors
Introduction
3.1. Intrinsic Semiconductors
3.2. Doped Semiconductors
3.3. Current Flow in Semiconductors
3.3.1. Drift Current
3.3.2. Diffusion Current
3.3.3. Relationship Between D and μ
3.4. The pn Junction with Open-Circuit Terminals (Equilibrium)
3.4.1. Physical Structure
3.4.2. Operation with Open-Circuit Terminals
3.5. The pn Junction with Applied Voltage
3.5.1. Qualitative Description of Junction Operation
3.5.2. The Current-Voltage Relationship of the Junction
3.5.3. Reverse Breakdown
3.6. Capacitive Effects in the pn Junction
3.6.1. Depletion or Junction Capacitance
3.6.2. Diffusion Capacitance
Summary
Problems

Diodes
Introduction
4.1. The Ideal Diode
4.1.1. Current-Voltage Characteristic
4.1.2. A Simple Application: The Rectifier
4.1.3. Another Application: Diode Logic Gates
4.2. Terminal Characteristics of Junction Diodes
4.2.1. The Forward-Bias Region
4.2.2. The Reverse-Bias Region
4.2.3. The Breakdown Region
4.3. Modeling the Diode Forward Characteristic
4.3.1. The Exponential Model
4.3.2. Graphical Analysis Using the Exponential Model
4.3.3. Iterative Analysis Using the Exponential Model
4.3.4. The Need for Rapid Analysis
4.3.5. The Constant-Voltage-Drop Model
4.3.6. The Ideal-Diode Model
4.3.7. The Small-Signal Model
4.3.8. Use of the Diode Forward Drop in Voltage Regulation
4.4. Operation in the Reverse Breakdown Region—Zener Diodes
4.4.1. Specifying and Modeling the Zener Diode
4.4.2. Use of the Zener as a Shunt Regulator
4.4.3. Temperature Effects
4.4.4. A Final Remark
4.5. Rectifier Circuits
4.5.1. The Half-Wave Rectifier
4.5.2. The Full-Wave Rectifier
4.5.3. The Bridge Rectifier
4.5.4. The Rectifier with a Filter Capacitor—The Peak Rectifier
4.5.5. Precision Half-Wave Rectifier—The Super Diode
4.6. Limiting and Clamping Circuits
4.6.1. Limiter Circuits
4.6.2. The Clamped Capacitor or DC Restorer
4.6.3. The Voltage Doubler
4.7. Special Diode Types
4.7.1. The Schottky-Barrier Diode (SBD)
4.7.2. Varactors
4.7.3. Photodiodes
4.7.4. Light-Emitting Diodes (LEDs)
Summary
Problems

MOS Field-Effect Transistors (MOSFETs)
Introduction
5.1. Device Structure and Physical Operation
5.1.1. Device Structure
5.1.2. Operation with Zero Gate Voltage
5.1.3. Creating a Channel for Current Flow
5.1.4. Applying a Small Ï…DS
5.1.5. Operation as Ï…DS is Increased
5.1.6. Operation for υDS ≥ υov
5.1.7. The p-Channel MOSFET
5.1.8. Complementary MOS or CMOS
5.1.9. Operating the MOS Transistor in the Subthreshold Region
5.2. Current–Voltage Characteristics
5.2.1. Circuit Symbol
5.2.2. The iD-Ï…DS Characteristics
5.2.3. The iD-Ï…GS Characteristic
5.2.4. Finite Output Resistance in Saturation
5.2.5. Characteristics of the p-Channel MOSFET
5.3. MOSFET Circuits at DC
5.4. Applying the MOSFET in Amplifier Design
5.4.1. Obtaining a Voltage Amplifier
5.4.2. The Voltage Transfer Characteristic (VTC)
5.4.3. Biasing the MOSFET to Obtain Linear Amplification
5.4.4. The Small-Signal Voltage Gain
5.4.5. Determining the VTC by Graphical Analysis
5.4.6. Locating the Bias Point Q
5.5. Small-Signal Operation and Models
5.5.1. The DC Bias Point
5.5.2. The Signal Current in the Drain Terminal
5.5.3. Voltage Gain
5.5.4. Separating the DC Analysis and the Signal Analysis
5.5.5. Small-Signal Equivalent Circuit Models
5.5.6. The Transconductance gm
5.5.7. The T Equivalent Circuit Model
5.5.8. Summary
5.6. Basic MOSFET Amplifier Configurations
5.6.1. The Three Basic Configurations
5.6.2. Characterizing Amplifiers
5.6.3. The Common-Source Configuration
5.6.4. The Common-Source Amplifier with a Source Resistance
5.6.5. The Common-Gate Amplifier
5.6.6. The Common-Drain Amplifier or Source Follower
5.6.7. Summary and Comparisons
5.7. Biasing in MOS Amplifier Circuits
5.7.1. Biasing by Fixing VGS
5.7.2. Biasing by Fixing VG and Connecting a Resistance in the Source
5.7.3. Biasing Using a Drain-to-Gate Feedback Resistance
5.7.4. Biasing Using a Constant-Current Source
5.7.5. A Final Remark
5.8. Discrete-Circuit MOS Amplifiers
5.8.1. The Basic Structure
5.8.2. The Common-Source (CS) Amplifier
5.8.3. The Common-Source Amplifier with a Source Resistance
5.8.4. The Common-Gate Amplifier
5.8.5. The Source Follower
5.8.6. The Amplifier Frequency Response
5.9. The Body Effect and Other Topics
5.9.1. The Role of the Substrate—The Body Effect
5.9.2. Modeling the Body Effect
5.9.3. Temperature Effects
5.9.4. Breakdown and Input Protection
5.9.5. Velocity Saturation
5.9.6. The Depletion-Type MOSFET
Summary
Problems

Bipolar Junction Transistors (BJTs)
Introduction
6.1. Device Structure and Physical Operation
6.1.1. Simplified Structure and Modes of Operation
6.1.2. Operation of the npn Transistor in the Active Mode
6.1.3. Structure of Actual Transistors
6.1.4. Operation in the Saturation Mode
6.1.5. The pnp Transistor
6.2. Current–Voltage Characteristics
6.2.1. Circuit Symbols and Conventions
6.2.2. Graphical Representation of Transistor Characteristics
6.2.3. Dependence of iC on the Collector Voltage—The Early Effect
6.2.4. An Alternative Form of the Common-Emitter Characteristics
6.3. BJT Circuits at DC
6.4. Applying the BJT in Amplifier Design
6.4.1. Obtaining a Voltage Amplifier
6.4.2. The Voltage Transfer Characteristic (VTC)
6.4.3. Biasing the BJT to Obtain Linear Amplification
6.4.4. The Small-Signal Voltage Gain
6.4.5. Determining the VTC by Graphical Analysis
6.4.6. Locating the Bias Point Q
6.5. Small-Signal Operation and Models
6.5.1. The Collector Current and the Transconductance
6.5.2. The Base Current and the Input Resistance at the Base
6.5.3. The Emitter Current and the Input Resistance at the Emitter
6.5.4. Voltage Gain
6.5.5. Separating the Signal and the DC Quantities
6.5.6. The Hybrid-Ï€ Model
6.5.7. The T Model
6.5.8. Small-Signal Models of the pnp Transistor
6.5.9. Application of the Small-Signal Equivalent Circuits
6.5.10. Performing Small-Signal Analysis Directly on the Circuit Diagram
6.5.11. Augmenting the Small-Signal Model to Account for the Early Effect
6.5.12. Summary
6.6. Basic BJT Amplifier Configurations
6.6.1. The Three Basic Configurations
6.6.2. Characterizing Amplifiers
6.6.3. The Common-Emitter Amplifier
6.6.4. The Common-Emitter Amplifier with an Emitter Resistance
6.6.5. The Common-Base (CB) Amplifier
6.6.6. The Common-Collector Amplifier or Emitter Follower
6.6.7. Summary and Comparisons
6.7. Biasing in BJT Amplifier Circuits
6.7.1. The Classical Discrete-Circuit Biasing Arrangement
6.7.2. A Two-Power-Supply Version of the Classical Bias Arrangement
6.7.3. Biasing Using a Collector-to-Base Feedback Resistor
6.7.4. Biasing Using a Constant-Current Source
6.8. Discrete-Circuit BJT Amplifier
6.8.1. The Basic Structure
6.8.2. The Common-Emitter Amplifier
6.8.3. The Common-Emitter Amplifier with an Emitter Resistance
6.8.4. The Common-Base Amplifier
6.8.5. The Emitter Follower
6.8.6. The Amplifier Frequency Response
6.9. Transistor Breakdown and Temperature Effects
6.9.1. Transistor Breakdown
6.9.2. Dependence of β on IC and Temperature
Summary
Problems

part II. INTEGRATED-CIRCUIT AMPLIFIERS

Building Blocks of Integrated-Circuit Amplifiers
Introduction
7.1. IC Design Philosophy
7.2. The Basic Gain Cell
7.2.1. The CS and CE Amplifiers with Current-Source Loads
7.2.2. The Intrinsic Gain
7.2.3. Effect of the Output Resistance of the Current-Source Load
7.2.4. Increasing the Gain of the Basic Cell
7.3. The Cascode Amplifier
7.3.1. Cascoding
7.3.2. The MOS Cascode
7.3.3. Distribution of Voltage Gain in a Cascode Amplifier
7.3.4. The Output Resistance of a Source-Degenerated CS Amplifier
7.3.5. Double Cascoding
7.3.6. The Folded Cascode
7.3.7. The BJT Cascode
7.3.8. The Output Resistance of an Emitter-Degenerated CE Amplifier
7.3.9. BiCMOS Cascodes
7.4. IC Biasing—Current Sources, Current Mirrors, and Current-Steering Circuits
7.4.1. The Basic MOSFET Current Source
7.4.2. MOS Current-Steering Circuits
7.4.3. BJT Circuits
7.5. Current-Mirror Circuits with Improved Performance
7.5.1. Cascode MOS Mirrors
7.5.2. A Bipolar Mirror with Base-Current Compensation
7.5.3. The Wilson Current Mirror
7.5.4. The Wilson MOS Mirror
7.5.5. The Widlar Current Source
7.6. Some Useful Transistor Pairings
7.6.1. The CC-CE, CD-CS, and CD-CE Configurations
7.6.2. The Darlington Configuration
7.6.3. The CC-CB and CD-CG Configurations
Summary
Appendix 7.A Comparison of the MOSFET and BJT
7.A.1 Typical Values of IC MOSFET Parameters
7.A.2 Typical Values of IC BJT Parameters
7.A.3 Comparison of Important Characteristics
7.A.4 Combining MOS and Bipolar Transistors: BiCMOS Circuits
7.A.5 Validity of the Square-Law MOSFET Model
Problems

Differential and Multistage Amplifiers
Introduction
8.1. The MOS Differential Pair
8.1.1. Operation with a Common-Mode Input Voltage
8.1.2. Operation with a Differential Input Voltage
8.1.3. Large-Signal Operation
8.2. Small-Signal Operation of the MOS Differential Pair
8.2.1. Differential Gain
8.2.2. The Differential Half-Circuit
8.2.3. The Differential Amplifier with Current-Source Loads
8.2.4. Cascode Differential Amplifier
8.2.5. Common-Mode Gain and Common-Mode Rejection Ratio (CMRR)
8.3. The BJT Differential Pair
8.3.1. Basic Operation
8.3.2. Input Common-Mode Range
8.3.3. Large-Signal Operation
8.3.4. Small-Signal Operation
8.3.5. Common-Mode Gain and CMRR
8.4. Other Nonideal Characteristics of the Differential Amplifier
8.4.1. Input Offset Voltage of the MOS Differential Amplifier
8.4.2. Input Offset Voltage of the Bipolar Differential Amplifier
8.4.3. Input Bias and Offset Currents of the Bipolar Differential Amplifier
8.4.4. A Concluding Remark
8.5. The Differential Amplifier with Active Load
8.5.1. Differential to Single-Ended Conversion
8.5.2. The Active-Loaded MOS Differential Pair
8.5.3. Differential Gain of the Active-Loaded MOS Pair
8.5.4. Common-Mode Gain and CMRR
8.5.5. The Bipolar Differential Pair with Active Load
8.6. Multistage Amplifiers
8.6.1. A Two-Stage CMOS Op Amp
8.6.2. A Bipolar Op Amp
Summary
Problems

Frequency Response
Introduction
9.1. Low-Frequency Response of the CS and CE Amplifiers
9.1.1. The CS Amplifier
9.1.2. The CE Amplifier
9.2. Internal Capacitive Effects and the High-Frequency Model of the MOSFET and the BJT
9.2.1. The MOSFET
9.2.2. The BJT
9.3. High-Frequency Response of the CS and CE Amplifiers
9.3.1. The Common-Source Amplifier
9.3.2. The Common-Emitter Amplifier
9.4. Useful Tools for the Analysis of the High-Frequency Response of Amplifiers
9.4.1. The High-Frequency Gain Function
9.4.2. Determining the 3-dB Frequency fH
9.4.3. Using Open-Circuit Time Constants for the Approximate Determination of fH
9.4.4. Miller’s Theorem
9.5. A Closer Look at the High-Frequency Response of the CS and CE Amplifiers
9.5.1. The Equivalent Circuit
9.5.2. Analysis Using Miller’s Theorem
9.5.3. Analysis Using Open-Circuit Time Constants
9.5.4. Exact Analysis
9.5.5. Adapting the Formulas for the Case of the CE Amplifier
9.5.6. The Situation when Rsig is Low
9.6. High-Frequency Response of the CG and Cascode Amplifiers
9.6.1. High-Frequency Response of the CG Amplifier
9.6.2. High-Frequency Response of the MOS Cascode Amplifier
9.6.3. High-Frequency Response of the Bipolar Cascode Amplifier
9.7. High-Frequency Response of the Source and Emitter Followers
9.7.1. The Source Follower
9.7.2. The Emitter Follower
9.8. High-Frequency Response of Differential Amplifiers
9.8.1. Analysis of the Resistively Loaded MOS Amplifier
9.8.2. Analysis of the Active-Loaded MOS Amplifier
9.9. Other Wideband Amplifier Configurations
9.9.1. Obtaining Wideband Amplification by Source and Emitter Degeneration
9.9.2. The CD-CS, CC-CE and CD-CE Configurations
9.9.3. The CC-CB and CD-CG Configurations
9.10. Multistage Amplifier Examples
9.10.1. Frequency Response of the Two-Stage CMOS Op Amp
9.10.2. Frequency Response of the Bipolar Op Amp of Section 8.6.2.
Summary
Problems

Feedback
Introduction
10.1. The General Feedback Structure
10.2. Some Properties of Negative Feedback
10.2.1. Gain Desensitivity
10.2.2. Bandwidth Extension
10.2.3. Interference Reduction
10.2.4. Reduction in Nonlinear Distortion
10.3. The Four Basic Feedback Topologies
10.3.1. Voltage Amplifiers
10.3.2. Current Amplifiers
10.3.3. Transconductance Amplifiers
10.3.4. Transresistance Amplifiers
10.3.5. A Concluding Remark
10.4. The Feedback Voltage-Amplifier (Series-Shunt)
10.4.1. The Ideal Case
10.4.2. The Practical Case
10.4.3. Summary
10.5. The Feedback Transconductance-Amplifier (Series-Series)
10.5.1. The Ideal Case
10.5.2. The Practical Case
10.5.3. Summary
10.6. The Feedback Transresistance-Amplifier (Shunt-Shunt)
10.6.1. The Ideal Case
10.6.2. The Practical Case
10.6.3. Summary
10.7. The Feedback Current-Amplifier (Shunt-Series)
10.7.1. The Ideal Case
10.7.2. The Practical Case
10.8. Summary of the Feedback Analysis Method
10.9. Determining the Loop Gain
10.9.1. An Alternative Approach for Finding Aβ
10.9.2. Equivalence of Circuits from a Feedback-Loop Point of View
10.10. The Stability Problem
10.10.1. The Transfer Function of the Feedback Amplifier
10.10.2. The Nyquist Plot
10.11. Effect of Feedback on the Amplifier Poles
10.11.1. Stability and Pole Location
10.11.2. Poles of the Feedback Amplifier
10.11.3. Amplifier with a Single-Pole Response
10.11.4. Amplifier with a Two-Pole Response
10.11.5. Amplifier with Three or More Poles
10.12. Stability Study Using Bode Plots
10.12.1. Gain and Phase Margins
10.12.2. Effect of Phase Margin on Closed-Loop Response
10.12.3. An Alternative Approach for Investigating Stability
10.13. Frequency Compensation
10.13.1. Theory
10.13.2. Implementation
10.13.3. Miller Compensation and Pole Splitting
Summary
Problems

Output Stages and Power Amplifiers
Introduction
11.1. Classification of Output Stages
11.2. Class A Output Stage
11.2.1. Transfer Characteristic
11.2.2. Signal Waveforms
11.2.3. Power Dissipation
11.2.4. Power Conversion Efficiency
11.3. Class B Output Stage
11.3.1. Circuit Operation
11.3.2. Transfer Characteristic
11.3.3. Power-Conversion Efficiency
11.3.4. Power Dissipation
11.3.5. Reducing Crossover Distortion
11.3.6. Single-Supply Operation
11.4. Class AB Output Stage
11.4.1. Circuit Operation
11.4.2. Output Resistance
11.5. Biasing the Class AB Circuit
11.5.1. Biasing Using Diodes
11.5.2. Biasing Using the VBE Multiplier
11.6. CMOS Class AB Output Stages
11.6.1. The Classical Configuration
11.6.2. An Alternative Circuit Utilizing Common-Source Transistors
11.7. Power BJTs
11.7.1. Junction Temperature
11.7.2. Thermal Resistance
11.7.3. Power Dissipation versus Temperature
11.7.4. Transistor Case and Heat Sink
11.7.5. The BJT Safe Operating Area
11.7.6. Parameter Values of Power Transistors
11.8. Variations on the Class AB Configuration
11.8.1. Use of Input Emitter Followers
11.8.2. Use of Compound Devices
11.8.3. Short-Circuit Protection
11.8.4. Thermal Shutdown
11.9. IC Power Amplifiers
11.9.1. A Fixed-Gain IC Power Amplifier
11.9.2. Power Op Amps
11.9.3. The Bridge Amplifier
11.10. MOS Power Transistors
11.10.1. Structure of the Power MOSFET
11.10.2. Characteristics of Power MOSFETs
11.10.3. Temperature Effects
11.10.4. Comparison with BJTs
11.10.5. A Class AB Output Stage Utilizing Power MOSFETs
Summary
Problems

Operational Amplifier Circuits
Introduction
12.1. The Two Stage CMOS Op Amp
12.1.1. The Circuit
12.1.2. Input Common-Mode Range and Output Swing
12.1.3. Voltage Gain
12.1.4. Common-Mode Rejection Ratio (CMRR)
12.1.5. Frequency Response
12.1.6. Slew Rate
12.1.7. Power-Supply Rejection Ratio (PSRR)
12.1.8. Design Tradeoffs
12.2. The Folded Cascode CMOS Op Amp
12.2.1. The Circuit
12.2.2. Input Common-Mode Range and Output Swing
12.2.3. Voltage Gain
12.2.4. Frequency Response
12.2.5. Slew Rate
12.2.6. Increasing the Input Common-Mode Range: Rail-to-Rail Input Operation
12.2.7. Increasing the Output Voltage Range: The Wide-Swing Current Mirror
12.3. The 741 Op-Amp Circuit
12.3.1. Bias Circuit
12.3.2. Short-Circuit Protection Circuitry
12.3.3. The Input Stage
12.3.4. The Second Stage
12.3.5. The Output Stage
12.3.6. Device Parameters
12.4. DC Analysis of the 741
12.4.1. Reference Bias Current
12.4.2. Input-Stage Bias
12.4.3. Input Bias and Offset Currents
12.4.4. Input Offset Voltage
12.4.5. Input Common-Mode Range
12.4.6. Second-Stage Bias
12.4.7. Output-Stage Bias
12.4.8. Summary
12.5. Small-Signal Analysis of the 741
12.5.1. The Input Stage
12.5.2. The Second Stage
12.5.3. The Output Stage
12.6. Gain, Frequency Response, and Slew Rate of the 741
12.6.1. Small-Signal Gain
12.6.2. Frequency Response
12.6.3. A Simplified Model
12.6.4. Slew Rate
12.6.5. Relationship Between ft and SR
12.7. Modern Techniques for the Design of BJT Op Amps
12.7.1. Special Performance Requirements
12.7.2. Bias Design
12.7.3. Design of Input Stage to Obtain Rail-to-Rail VICM
12.7.4. Common-Mode Feedback to Control the DC Voltage at the Output of the Input Stage
12.7.5. Output-Stage Design for Near Rail-to-Rail Output Swing
Summary
Problems

part III. DIGITAL INTEGRATED CIRCUITS

CMOS Digital Logic Circuits
Introduction
13.1. Digital Logic Inverters
13.1.1. Function of the Inverter
13.1.2. The Voltage Transfer Characteristic (VTC)
13.1.3. Noise Margins
13.1.4. The Ideal VTC
13.1.5. Inverter Implementation
13.1.6. Power Dissipation
13.1.7. Propagation Delay
13.1.8. Power-Delay and Energy-Delay Products
13.1.9. Silicon Area
13.1.10. Digital IC Technologies and Logic-Circuit Families
13.1.11. Styles for Digital-System Design
13.1.12. Design Abstraction and Computer Aids
13.2. The CMOS Inverter
13.2.1. Circuit Operation
13.2.2. The Voltage-Transfer Characteristic
13.2.3. The Situation When QN and QP are Not Matched
13.3. Dynamic Operation of the CMOS Inverter
13.3.1. Determining the Propagation Delay
13.3.2. Determining the Equivalent Load Capacitance C
13.3.3. Inverter Sizing
13.3.4. Dynamic Power Dissipation
13.4. CMOS Logic-Gate Circuits
13.4.1. Basic Structure
13.4.2. The Two-Input NOR Gate
13.4.3. The Two-Input NAND Gate
13.4.4. A Complex Gate
13.4.5. Obtaining the PUN from the PDN and Vice Versa
13.4.6. The Exclusive-OR Function
13.4.7. Summary of the Synthesis Method
13.4.8. Transistor Sizing
13.4.9. Effects of Fan-In and Fan-Out on Propagation Delay
13.5. Implications of Technology Scaling: Issues in Deep-Submicron Design
13.5.1. Scaling Implications
13.5.2. Velocity Saturation
13.5.3. Subthreshold Conduction
13.5.4. Wiring—The Interconnect
Summary
Problems

Advanced MOS and Bipolar Logic Circuits
Introduction
14.1. Pseudo-NMOS Logic Circuits
14.1.1. The Pseudo-NMOS Inverter
14.1.2. Static Characteristics
14.1.3. Derivation of the VTC
14.1.4. Dynamic Operation
14.1.5. Design
14.1.6. Gate Circuits
14.1.7. Concluding Remarks
14.2. Pass-Transistor Logic Circuits
14.2.1. An Essential Design Requirement
14.2.2. Operation with NMOS Transistors as Switches
14.2.3. Restoring the Value of VOH to VDD
14.2.4. The Use of CMOS Transmission Gates as Switches
14.2.5. Pass-Transistor Logic Circuit Examples
14.2.6. A Final Remark
14.3. Dynamic MOS Logic Circuits
14.3.1. The Basic Principle
14.3.2. Nonideal Effects
14.3.3. Domino CMOS Logic
14.3.4. Concluding Remarks
14.4. Emitter-Coupled Logic (ECL)
14.4.1. The Basic Principle
14.4.2. ECL Families
14.4.3. The Basic Gate Circuit
14.4.4. Voltage-Transfer Characteristics
14.4.5. Fan-Out
14.4.6. Speed of Operation and Signal Transmission
14.4.7. Power Dissipation
14.4.8. Thermal Effects
14.4.9. The Wired-OR Capability
14.4.10. Final Remarks
14.5. BiCMOS Digital Circuits
14.5.1. The BiCMOS Inverter
14.5.2. Dynamic Operation
14.5.3. BiCMOS Logic Gates
Summary
Problems

Memory Circuits
Introduction
15.1. Latches and Flip-Flops
15.1.1. The Latch
15.1.2. The SR Flip-Flop
15.1.3. CMOS Implementation of SR Flip-Flops
15.1.4. A Simpler CMOS Implementation of the Clocked SR Flip-Flop
15.1.5. D Flip-Flop Circuits
15.2. Semiconductor Memories: Types and Architectures
15.2.1. Memory-Chip Organization
15.2.2. Memory-Chip Timing
15.3. Random-Access Memory (RAM) Cells
15.3.1. Static Memory (SRAM) Cell
15.3.2. Dynamic Memory (DRAM) Cell
15.4. Sense Amplifiers and Address Decoders
15.4.1. The Sense Amplifier
15.4.2. The Row-Address Decoder
15.4.3. The Column-Address Decoder
15.4.4. Pulse-Generation Circuits
15.5. Read-Only Memory (ROM)
15.5.1. A MOS ROM
15.5.2. Mask-Programmable ROMs
15.5.3. Programmable ROMs (PROMs and EPROMs)
Summary
Problems

part IV. FILTERS AND OSCILLATORS

Filters and Tuned Amplifiers
Introduction
16.1. Filter Transmission, Types, and Specification
16.1.1. Filter Transmission
16.1.2. Filter Types
16.1.3. Filter Specification
16.2. The Filter Transfer Function
16.3. Butterworth and Chebyshev Filters
16.3.1. The Butterworth Filter
16.3.2. The Chebyshev Filter
16.4. First-Order and Second-Order Filter Functions
16.4.1. First-Order Filters
16.4.2. Second-Order Filter Functions
16.5. The Second-Order LCR Resonator
16.5.1. The Resonator Natural Modes
16.5.2. Realization of Transmission Zeros
16.5.3. Realization of the Low-Pass Function
16.5.4. Realization of the High-Pass Function
16.5.5. Realization of the Bandpass Function
16.5.6. Realization of the Notch Functions
16.5.7. Realization of the All-Pass Function
16.6. Second-Order Active Filters Based on Inductor Replacement
16.6.1. The Antoniou Inductance-Simulation Circuit
16.6.2. The Op Amp-RC Resonator
16.6.3. Realization of the Various Filter Types
16.6.4. The All-Pass Circuit
16.7. Second-Order Active Filters Based on the Two-Integrator-Loop Topology
16.7.1. Derivation of the Two-Integrator-Loop Biquad
16.7.2. Circuit Implementation
16.7.3. An Alternative Two-Integrator-Loop Biquad Circuit
16.7.4. Final Remarks
16.8. Single-Amplifier Biquadratic Active Filters
16.8.1. Synthesis of the Feedback Loop
16.8.2. Injecting the Input Signal
16.8.3. Generation of Equivalent Feedback Loops
16.9. Sensitivity
16.9.1. A Concluding Remark
16.10. Switched-Capacitor Filters
16.10.1. The Basic Principle
16.10.2. Practical Circuits
16.10.3. A Final Remark
16.11. Tuned Amplifiers
16.11.1. The Basic Principle
16.11.2. Inductor Losses
16.11.3. Use of Transformers
16.11.4. Amplifiers with Multiple Tuned Circuits
16.11.5. The Cascode and the CC-CB Cascade
16.11.6. Synchronous Tuning
16.11.7. Stagger-tuning
Summary
Problems

Signal Generators and Waveform-Shaping Circuits
Introduction
17.1. Basic Principles of Sinusoidal Oscillators
17.1.1. The Oscillator Feedback Loop
17.1.2. The Oscillation Criterion
17.1.3. Nonlinear Amplitude Control
17.1.4. A Popular Limiter Circuit for Amplitude Control
17.2. Op-Amp-RC Oscillator Circuits
17.2.1. The Wien-Bridge Oscillator
17.2.2. The Phase-Shift Oscillator
17.2.3. The Quadrature Oscillator
17.2.4. The Active-Filter-Tuned Oscillator
17.2.5. A Final Remark
17.3. LC and Crystal Oscillators
17.3.1. LC-Tuned Oscillators
17.3.2. Crystal Oscillators
17.4. Bistable Multivibrators
17.4.1. The Feedback Loop
17.4.2. Transfer Characteristics of the Bistable Circuit
17.4.3. Triggering the Bistable Circuit
17.4.4. The Bistable Circuit as a Memory Element
17.4.5. A Bistable Circuit with Noninverting Transfer Characteristics
17.4.6. Application of the Bistable Circuit as a Comparator
17.4.7. Making the Output Levels More Precise
17.5. Generation of Square and Triangular Waveforms Using Astable Multivibrators
17.5.1. Operation of the Astable Multivibrator
17.5.2. Generation of Triangular Waveforms
17.6. Generation of a Standardized Pulse— The Monostable Multivibrator
17.7. Integrated-Circuit Timers
17.7.1. The 555 Circuit
17.7.2. Implementing a Monostable Multivibrator Using the 555 IC
17.7.3. An Astable Multivibrator Using the 555 IC
17.8. Nonlinear Waveform-Shaping Circuits
17.8.1. The Breakpoint Method
17.8.2. The Nonlinear-Amplification Method
17.9. Precision Rectifier Circuits
17.9.1. Precision Half-Wave Rectifier— The “Superdiode”
17.9.2. An Alternative Circuit
17.9.3. An Application: Measuring AC Voltages
17.9.4. Precision Full-Wave Rectifier
17.9.5. A Precision Bridge Rectifier for Instrumentation Applications
17.9.6. Precision Peak Rectifiers
17.9.7. A Buffered Precision Peak Detector
17.9.8. A Precision Clamping Circuit
Summary
Problems

Appendixes on DVD
A VLSI Fabrication Technology
B SPICE Device Models and Design and Simulation Examples Using PSpice® and Multisim™
C Two-Port Network Parameters
D Some Useful Network Theorems
E Single-Time-Constant Circuits
F s-Domain Analysis: Poles, Zeros, and Bode Plots
G Bibliography
H Standard Resistance Values and Unit Prefixes
I Answers to Selected Problems
Index

Get Microelectronic Circuits Sedra Smith 6th Edition PDF Free Download Below:

Download Now

4.2 6 votes
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x